138 research outputs found

    Multi-Pair Two-Way Relay Network with Harvest-Then-Transmit Users: Resolving Pairwise Uplink-Downlink Coupling

    Get PDF
    While two-way relaying is a promising way to enhance the spectral efficiency of wireless networks, the imbalance of relay-user distances may lead to excessive wireless power at the nearby-users. To exploit the excessive power, the recently proposed harvest-then-transmit technique can be applied. However, it is well-known that harvest-then-transmit introduces uplink-downlink coupling for a user. Together with the co-dependent relationship between paired users and interference among multiple user pairs, wirelessly powered two-way relay network suffers from the unique pairwise uplink-downlink coupling, and the joint uplink-downlink network design is nontrivial. To this end, for the one pair users case, we show that a global optimal solution can be obtained. For the general case of multi-pair users, based on the rank-constrained difference of convex program, a convergence guaranteed iterative algorithm with an efficient initialization is proposed. Furthermore, a lower bound to the performance of the optimal solution is derived by introducing virtual receivers at relay. Numerical results on total transmit power show that the proposed algorithm achieves a transmit power value close to the lower bound

    Robust Beamforming for Amplify-and-Forward MIMO Relay Systems Based on Quadratic Matrix Programming

    Get PDF
    In this paper, robust transceiver design based on minimum-mean-square-error (MMSE) criterion for dual-hop amplify-and-forward MIMO relay systems is investigated. The channel estimation errors are modeled as Gaussian random variables, and then the effect are incorporated into the robust transceiver based on the Bayesian framework. An iterative algorithm is proposed to jointly design the precoder at the source, the forward matrix at the relay and the equalizer at the destination, and the joint design problem can be efficiently solved by quadratic matrix programming (QMP).Comment: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2010), U.S.

    New advances in symbol timing synchronization of single-carrier, multi-carrier and space-time multiple-antenna systems

    Get PDF
    In this dissertation, the problem of symbol timing synchronization for the following three different communication systems is studied: 1) conventional single-carrier transmissions with single antenna in both transmitter and receiver; 2) single-carrier transmissions with multiple antennas at both transmitter and receiver; and 3) orthogonal frequency division multiplexing (OFDM) based IEEE 802.11a wireless local area networks (WLANs). For conventional single-carrier, single-antenna systems, a general feedforward symbol-timing estimation framework is developed based on the conditional maximum likelihood principle. The proposed algorithm is applied to linear modulations and two commonly used continuous phase modulations: MSK and GMSK. The performance of the proposed estimator is analyzed analytically and via simulations. Moreover, using the newly developed general estimation framework, all the previously proposed digital blind feedforward symbol timing estimators employing second-order statistics are cast into a unified framework. The finite sample mean-square error expression for this class of estimators is established and the best estimators are determined. Simulation results are presented to corroborate the analytical results. Moving on to single-carrier, multiple-antenna systems, we present two algorithms. The first algorithm is based on a heuristic argument and it improves the optimum sample selection algorithm by Naguib et al. so that accurate timing estimates can be obtained even if the oversampling ratio is small. The performance of the proposed algorithm is analyzed both analytically and via simulations. The second algorithm is based on the maximum likelihood principle. The data aided (DA) and non-data aided (NDA) ML symbol timing estimators and their cor- responding CCRB and MCRB in MIMO correlated ??at-fading channels are derived. It is shown that the improved algorithm developed based on the heuristic argument is just a special case of the DA ML estimator. Simulation results under different operating conditions are given to assess and compare the performances of the DA and NDA ML estimators with respect to their corresponding CCRBs and MCRBs. In the last part of this dissertation, the ML timing synchronizer for IEEE 802.11a WLANs on frequency-selective fading channels is developed. The proposed algorithm is compared with four of the most representative timing synchronization algorithms, one specically designed for IEEE 802.11a WLANs and three other algorithms designed for general OFDM frame synchronization
    • …
    corecore